The Application of Thermal Solar Energy to High Temperature Processes: Case Study of the Synthesis of Alumina from Boehmite
نویسندگان
چکیده
The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide) in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens). The solar installation provides a power density of 260 W · cm(-2) which allows reaching temperatures upper than 1000 °C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.
منابع مشابه
Experimental Investigation of the Thermal Performance of Vacuum Tube Solar Collectors (VTSC) Using Alumina Nanofluids
The enhancement of the thermal performance of Vacuum Tube Solar Collectors (VTSC) was studied by using alumina nanofluid as working fluid. VTSC is a simple and commonly utilized type of collector. This study established the heat transfer experimental model of all glass VTSCs used in a forced-circulation solar water heating system using alumina nanofluid as base fluid. Al2O3 (with an average par...
متن کاملSol-gel synthesis and characterization of alumina-15%mullite composite nanopowder
Homogeneous distribution of mullite in the matrix of alumina can be obtained through sol-gel method. In this work, nanopowder of alumina-mullite composite was synthesized with high homogeneity and high purity. So aluminum chloride hexahydrate and tetraethyl orthosilicate were used instead of alumina or mullite nanopowder. Studying the simultaneouse thermal analysis (STA) of mullite precursor re...
متن کاملSynthesis of Al2O3-ZrO2 Nanocomposite by Mechanical Activated Self-propagating High Temperature Synthesis(MASHS) and Ignited via Laser
By consideration of unique properties of composite Al2O3-ZrO2 such as high toughness, high wear resistant and relative low thermal expansion, in this study, nanocomposite of Al2O3-ZrO2 was produced by Mechanical activated Self propagating High-temperature Synthesis (MASHS) using laser beam for ignition. First Al and ZrO2 powders were mixed in the mole ratio of 1:1 and milled for 1, 3 and 6 hour...
متن کاملDesigning and Application of Solar Active Systems for Hakim Sabzevari University: A Case Study of the Dining Hall
In this paper, on the basis of Green Comprehensive Plan at Hakim Sabzevari University of Sabzevar, Iran, the application of active solar systems for the dining hall is evaluated. The impact of solar systems and energy management designed for this hall on energy consumption and environment was investigated.This study measures the electricity and thermal energy consumption of the dining hall , p...
متن کاملInvestigation on Mechanism of Cordierite Formation from Nano Silica-Magnesium chloride-Reactive Alumina
Cordierite ceramics are used as refractory materials and kiln furnaces tools due to their very low coefficient of thermal expansion, high corrosion resistance and excellent thermal shock resistance. The aim of the present work was to synthesis of cordierite with raw materials including nano silica, magnesium chloride and reactive alumina. The synthesis procedure is done at solid state. Mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014